Nanotechnology

Opportunities and Challenges in a Changing World

Andrew D. Maynard
Chief Science Advisor

The Pew Charitable Trusts
Nanotechnology
Science Fiction or Science Fact?

Imagine…

A material where strength is governed by atomic bonds…

… that can be woven into super-strong strands and ropes…

… and used to build an elevator to space!

Nanotechnology is turning fiction to reality…

www.liftport.com

Countdown to Lift: April 12, 2018
4891 days, 10 hours, 33 minutes, 42 seconds

Single Walled Carbon nanotubes
Nanotechnology

- **Definition**
 - Development/engineering of new devices and materials which demonstrate unique properties associated with structures on a nanometer length-scale
 - Nanometer scale: less than ~100 nm

- **Includes:**
 - Engineered nano-scale surface layers
 - Engineered nano-scale structures (discrete or heterogeneous)
 - Engineered nano-scale devices
Nanotechnology in context

Nanomaterials
- Nanoscale structures in unprocessed form
 - Carbon Nanotubes

Nanointermediates
- Intermediate products with nanoscale features
 - Multifunctional nanoparticles

Nano-enabled products
- Finished goods incorporating nanotechnology
 - Nanocomposite parts

Nanotools
- Capital equipment and software used to visualize, manipulate and model matter at the nanoscale
 - Electron Microscopy
Nanotechnology development and implementation

1st Generation
- Passive Nanostructures
 - Nanoparticles
 - Nanotubes
 - Nano-composites
 - Nano-coatings
 - Nanostructured materials

2nd Generation
- Active Nanostructures
 - Electronics
 - Sensors
 - Targeted drugs
 - Adaptive structures

3rd Generation
- Systems of nanosystems
 - Guided molecular assembly
 - 3D networking
 - Robotics
 - Supra-molecules

4th Generation
- Molecular nanosystems
 - Molecules ‘by design’
 - Hierarchical functions
 - Evolutionary systems

Adapted from Roco, MC (2004) AIChE J. 50 (5)
Nanotechnology Investment and Impact
Global R&D Investment in 2004

Nanotechnology Investment and Impact
Global forecast of products sold incorporating nanotechnology

Nanotechnology is ‘Now’
Selected consumer products

- **Nanosilica Composite**
- **Carbon Nanotube Composite**
- **Nanoclay Composite**

Easton CNT is Real Nanotechnology

Easton has an eighty-three year history of leading the market by developing new materials and innovative products. Easton has been manufacturing sporting goods using carbon-fiber composites since 1980 and has been the leading brand of composite bicycle frames since their introduction in 1985.

New Easton’s research and development team is proud to present a revolutionary breakthrough in composite materials and manufacturing.

The Next Frontier

Nanotechnology is the next frontier in scientific research and advanced manufacturing. Nanotechnology deals with the manipulation of materials on an atomic or molecular scale measured in billions of a meter (nanometer). Scientists worldwide are spending countless man-hours and billions of dollars researching uses for nanotechnology in the areas of electronics, medicine, robotics and structural reinforcement.

Filttek™ Supreme Universal Restorative

Say goodbye to microfills and hybrids with our revolutionary new nanocomposite based restorative.

It’s good to be king!

3M ESPE

Filttek™ Supreme
Universal Restorative

Woodrow Wilson Center, Project on Emerging Nanotechnologies
Sustainability
Nanotechnology and risk

• Nanotechnology - The Motivation
 • Purposely engineered nanostructured materials and devices demonstrate new, unique and non-scalable properties and behavior

• Sustainable Nanotechnology - The Challenge
 • Does the nature of engineered nanostructured materials and devices present new health and environmental risks?
 • How can the benefits of nanotechnology be realized while proactively minimizing the potential risk?
 • How can public trust in the technology be maintained?
Nanotechnology in Poplar Culture

Over 20 science fiction novels since 1982, including Michael Crichton’s *Prey*

Variety of films including Spiderman II

Product branding

Public protests

Console video games

Nanobreaker for PSII

iPod Nano
Public Perceptions
Macoubrie, September 2005

- 80 - 85% of public has heard “little” or “nothing” about nanotechnology
- Perceived benefits outweigh risks
- Top perceived potential benefits include:
 - Disease detection and treatment
 - Environmental remediation
 - National Security
 - Improved human abilities
 - Cheaper, longer lasting consumer products
- Top concerns include:
 - Military uses
 - Long term health effects
 - Environmental impacts
 - Loss of freedom and privacy
- Low trust in both government and industry to manage risk

From: Macoubrie, J. “Nanotechnology: Public Concerns, Reasoning, and Trust in Government”
Potential Impact of Nanotechnology
Concerns

Industry and government regulators maintain that the unique size and properties of nanoscale materials do not warrant a closer look at the potential health, safety and environmental impacts. In this Occasional Paper, ETC Group explains why size matters!

ETC Group, P.O. Box 60086 RPO Osborne Winnipeg MB R3L 2Y9 CANADA
Tel: 204.433.6209 Fax: 204.285.1071 www.etcgroup.org
Nanomaterial safety - challenging assumptions

Handling unprocessed single walled nanotube material
Potential Health Impact
What makes ‘nano’ different?
Unanticipated exposure routes…
Translocation to the brain following inhalation in rodents

![Graph showing translocation of nanoparticles to various organs](image)

- **Cerebellum**
- **Cerebrum**
- **Lung**
- **Olfactory bulb**

Significant data point

Woodrow Wilson Center, Project on Emerging Nanotechnologies
Nanomaterials in the environment
Routes of exposure, uptake, distribution and degradation

Oberdörster et al. (2005) EHP. 113(7):823-839
Life Cycle Assessment
Taking a systems approach to environmental protection
National Nanotechnology Initiative
Strategic Plan

- Goal 4: Support responsible development of nanotechnology:
 - Environmental, health and safety implications
 - Ethical, legal and all other societal issues

- Program Component Area 7: Societal Dimensions
 - Environmental, health and safety research
 - Education
 - Broad societal implications

www.nano.gov
Interagency Coordination of Activities
Nanotechnology, Environment and Health Working Group (NEHI)

- Working group of the Nanoscale Science, Engineering and Technology subcommittee (NSET)

- Membership from all relevant regulatory and research agencies, Office of Science and Technology Policy, and Office of Management and Budget

- Goals of Working Group:
 - Provide for exchange of information among agencies
 - Facilitate the identification/prioritization of research and other activities required for responsible nanotechnology
 - Promote communication of information related to the environmental and health implications of nanotechnology
2006 National Nanotechnology Initiative Investment

Societal Implications

Estimates of 2006 NNI Investments within Societal Dimensions Program Component Area

<table>
<thead>
<tr>
<th></th>
<th>Environmental, Health, and Safety R&D</th>
<th>Education and Ethical, Legal, and other Societal Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSF</td>
<td>$24.0 million</td>
<td>$35.5 million</td>
</tr>
<tr>
<td>DOD</td>
<td>$1.0 million</td>
<td>$1.0 million</td>
</tr>
<tr>
<td>DOE</td>
<td>$0.5 million</td>
<td>$0.6 million</td>
</tr>
<tr>
<td>HHS(NIH)</td>
<td>$3.0 million</td>
<td>$5.0 million</td>
</tr>
<tr>
<td>DOC(NIST)</td>
<td>$0.9 million</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USDA</td>
<td>$0.5 million</td>
<td>$0.5 million</td>
</tr>
<tr>
<td>EPA</td>
<td>$4.0 million</td>
<td></td>
</tr>
<tr>
<td>HHS (NIOSH)</td>
<td>$3.1 million</td>
<td></td>
</tr>
<tr>
<td>DOJ</td>
<td>$1.5 million</td>
<td></td>
</tr>
<tr>
<td>DHS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL*</td>
<td>$38.5 million</td>
<td>$42.6 million</td>
</tr>
</tbody>
</table>

* Indicates total investment.
National Institute for Occupational Safety and Health
Integrated research into the health impact of carbon nanotubes

Exposure routes → Exposure → Dose → Risk → Control → Reduced risk/impact

Characterization

Health Effects

Toxicity

Exposure

Risk

Control

Shvedova, Baron, Maynard

Woodrow Wilson Center, Project on Emerging Nanotechnologies
Environmental Protection Agency

- **Focus on Nanotechnology:**
 - Potential for environmental improvement
 - Possibility for harmful effects on human health/environment
 - EPA’s regulatory responsibilities
 - Toxic Substances Control Act, Clean Air Act, Clean Water Act, Comprehensive Environmental Response, Compensation and Liability Act/Superfund

- **Science to Achieve Results program (STAR)**
 - 2004 Program: Environmental and Human Health Effects of nanomaterials
 - $7 million, joint with NSF and NIOSH
 - 18 Grants Awarded – 14 EPA, 2 – NSF, 2 – NIOSH, To be announced
 - 2005 Program: Environmental and Human Health Effects of nanomaterials. Announcement expected Fall 2005
National Science Foundation
Center for Biological and Environmental Nanotechnology - Rice University

- **Highlights:**
 - $12.4 million from NSF, $5.3 million from Rice, over 5 years
 - > 200 invited “center” presentations; > 200 accepted publications
 - Research, education, knowledge transfer, commercialization
 - First observation of carbon nanotube emission and its first application to biological imaging.
 - Near-infrared nanoparticles demonstrated to shrink tumors using photothermal therapy.
 - First publications in the area of nanotechnology and environmental impact.

![Nanotube fluorescence](image1)

![Nanoshell-heated cancer tissue](image2)

Ecotoxicology and nanocarbons
Correlating Physico-Chemical and Toxicological Properties of Nanoparticles

- Nanoparticle
 - (physico-chemical characterization: size, external surface area, BET surface area [porosity], crystallinity, chemical composition, surface charge)

- In vitro assays
 - acellular assays
 - subcellular assays
 - cellular assays
 - model testing
 - in vivo assays

- Results for model inputs
 - biocompatible

- Surface modification
 - solubility
 - protein binding
 - cytoskeletal function
 - metabolic effects
 - oxidative stress
 - cytotoxicity

Oberdörster, Pui and Biswas
University of Rochester, University of Minnesota, Washington University St. Louis
Sustainable Nanotechnology
Global initiatives

- Europe
- Asia
- USA

Partnerships
- Academia
- Industry
- Non-Government Organizations
Project on Emerging Nanotechnologies
About the Woodrow Wilson International Center for Scholars

• Living memorial to Former President Wilson established by Congress in 1968
• Non-partisan institution, supported by public and private funds
• A lively, neutral, domestic and international forum for free and informed dialogue
• Integrated into the Smithsonian Institute
• 200 staff, fellows, and scholars
• Annual budget of $30m
• Directed by Former US Congressman Lee Hamilton
Project on Emerging Nanotechnologies

- **Goal**
 - Ensure government and private sector address the risks as well as the benefits of nanotechnology

- **Budget**
 - $3 million over 2 years

- **Programs**
 - Meetings, research, polling, outreach

Created in partnership with the Pew Charitable Trusts
Project on Emerging Nanotechnologies
Current activities include…

- Database of federally funded research on environmental, safety and health implications
 - Providing an overview of research focuses and gaps

- Review of airborne nanomaterial exposure measurement requirements
 - Evaluating current capabilities and research/development needs

- Use of gene arrays in ecotoxicity screening
 - Developing rapid, cost-effective screening assays for early detection of potential issues

- Facilitating domestic and international partnerships
Looking to the Future
Successful implementation of sustainable nanotechnologies

www.liftport.com
Summary

- Nanotechnology is a revolutionary technology
- Significant societal and economic benefits are anticipated
- Conventional risk management models are being challenged
- Successful development and implementation of nanotechnology will require an integrated approach to risk
- Global, interdisciplinary and cross-sector partnerships are essential to developing sustainable nanotechnologies
Contact Information

Dr Andrew D. Maynard
Chief Science Advisor
Project on Emerging Nanotechnologies
Woodrow Wilson International Center for Scholars at the Smithsonian Institute
One Woodrow Wilson Plaza
1300 Pennsylvania Ave. NW
Washington DC 20004
Tel: 202 691 4311
Email: andrew.maynard@wilsoncenter.org
URL: www.wilsoncenter.org