Cancer Nanotechnology – An Opportunity for Early Diagnosis and Novel Therapy: Developed vs Developing World Cost and Accessibility

Piotr Grodzinski, Ph.D.
Director, NCI Nanotechnology Alliance
National Cancer Institute

Cancer is now the #1 killer of Americans under 85
- 570,280 Americans will die of cancer this year
- 1,372,900 Americans this year will hear the words “you have cancer…”
- $192 billion = Costs of cancer in 2004

More Progress is Needed to Reduce Death Rates

Source: American Cancer Society.
Cancer Statistics - Worldwide

- Comparable ratio of incidence/mortality (developed vs developing world) rates for cancers with poor prognosis: lung, liver
- Value of early diagnosis to reduce mortality in developed countries for cancers with better prognosis: colon-rectum, breast, leukemia, cervix
- Variation in incidence for some cancers (prostate, liver, cervix) – impact of the environment (life style, infections)
- Vaccines for HBV (liver cancer) and HPV (cervical cancer)

Early Diagnosis and Effective Treatment – Key to Higher Survival Rates

Nanotechnology and Cancer

- Prevention and Control of Cancer
 - Developing early screening methods based on in-vitro tests
 - Developing nanoscale devices that can deliver cancer prevention agents
 - Designing multicomponent anticancer vaccines using nanoscale delivery vehicles

- Imaging Diagnostics
 - Designing targeted contrast agents that improve the resolution of detection to the single cell level

- Multifunctional Therapeutics
 - Developing nanoscale devices that deliver therapy locally at lower dose and higher efficacy
 - Creating “smart” therapeutic devices that can control the spatial and temporal release of therapeutic agents while monitoring the effectiveness of these agents

- Quality of Life Enhancement in Cancer Care
 - Designing nanoscale devices that can optimally deliver medications for treating conditions that may arise over time with chronic anticancer therapy, including pain, nausea, loss of appetite, depression, and difficulty breathing

Nanotechnology for Cancer: Evolution and Progress

- Treatment
 - 1) ‘Nano’ in-vitro sensors
 - Earlier diagnostics
 - Quantitative in-vivo nano-sensors
 - Further improved diagnostics

- Effectiveness
 - 1) Localized nano-therapy
 - More effective treatment
 - Reduced side effects

Nanotechnology will allow for the development of:
- Highly accurate in-vitro and in-vivo sensors
- Novel imaging contrast agents
- Platforms for localized therapy
Nanoparticles in Cancer Diagnosis and Treatment

“Research and technology development at the atomic, molecular or macromolecular scale leading to the controlled creation and use of structures, devices and systems with a length scale of approximately 1 – 100 nanometers (nm).”

(Source: National Nanotech Initiative)

Nanotechnologies for Developing World

- Energy storage, production and conversion
- Agricultural productivity enhancement
- Water treatment and remediation
- Disease diagnosis and screening
- Drug delivery systems
- Food processing and storage
- Air pollution remediation
- Construction
- Health monitoring
- Vector and pest detection and control

Push for Nanotechnology Role in Developing World

- Inexpensive diagnostic tests
- New vaccines
- Novel methods of drug delivery

Comprehensive initiative on healthcare?

Multiplexed Diagnostic Assays

Q-dots

Alivisatos et al.

Nanorods

Nicewarner-Pena et al., Science 294, 137 (2001)

Nanocrystals for E-chem det.

J. Wang, Analytica Chimica Acta 500 (2003) 247

Cantilevers

G. Wu and A. Majumdar, Nature Biotech 19, 856 (2001)
Monitoring of Breast Cancer Biomarkers Using Quantum Dots

- ER, PR, and HER2 can be detected using multiplex QDs simultaneously on specimens of breast cancer cell lines.
- ER, PR and HER2 detected using QD-Abs can be quantified using spectrometry.
- Detection/quantification of ER, PR and HER2 using QD-Abs correlated well with standard methods (IHC and Western Blotting).

O'Regan et al., submitted to PNAS

Microfluidics for Diagnostics

Drug Delivery

Problem:
- Non-specific
- Cannot reach tumor
- Insoluble
- Systemic chemotherapy is often toxic

Solution:
- Payload: large quantities of multiple drugs delivered directly to tumor sites
- Delivery device minimizes alterations needed to drug
- Therapeutic index shifts
- Enables nucleic acid delivery

Multi-Functional Nanoparticle-based Therapies

- Multi-functional platforms:
 - Targeting
 - Delivery
 - Reporting, biosensing

Free drug formulations do not possess multi-functional characteristics

First generation of nano-delivered drugs (no targeting) approved by FDA – Abraxane®

Abraxane

First generation of nano-delivered drugs approved by FDA – Abraxane®

Abraxane is albumin-bound, 130-nm particle form of paclitaxel. It was developed to avoid solvent-related toxicities in free paclitaxel and to exploit albumin receptor-mediated endothelial transport. Antitumor activity and mortality were assessed in nude mice bearing human tumor xenografts in lung (H522), breast (MX-1), ovarian (SK-OV-3), prostate (PC-3), and colon (HT29).

New Experiments

Multifunctional Nano-platforms: Find-Detect-Treat

- KB human tumor grown in in mice

Kukowska-Latallo, Baker et al., Cancer Research, 65, 5317 (2005)
Two tumors in a mouse are simultaneously ablated. The colored areas (blue and yellow) represent temperature levels conducive to ablation. The nanoshells injected into the tumor in the upper left are being irradiated from the laser on the other flank of the mouse.

Naomi Halas and Jennifer West, Rice University and Nanoshells, Inc.

New Experiments
Multifunctional Nano-platforms: Find-Detect-Treat

Genetic profiling using highly multiplex in-vitro platforms
Early imaging enabled through the use of ‘smart’ nanoparticles
Development of in-vivo sensing techniques which will detect (and possibly kill tumor cells) at very early stage
Reduced discomfort of routine exams – for example endoscopy using in-vivo integrated sensor/imaging/data transfer devices

Nanotechnology – Cancer Prevention
Patent activity (1975 – 2004) in nanotechnology for biomedical applications

Patent activity by disease
Nanotechnology Development: Path Forward

Challenge: Integration of Disciplines

- Silos of activity among private and public domains
- Disciplines are not used to working with each other
 - No common language
 - No common scientific literature
 - No common funding mechanisms
 - Few integrated training programs

<table>
<thead>
<tr>
<th>Engineering</th>
<th>Materials Science</th>
<th>Physics</th>
<th>Information Technology</th>
<th>Math</th>
<th>Medicinal Chemistry</th>
<th>Biology</th>
</tr>
</thead>
</table>

NCI’s Commitment to Cancer Nanotechnology

NCI Alliance for Nanotechnology in Cancer

- $144.3M initiative
- Designed to “ignite” nano-product development and commercialization
- Encompasses public and private sectors
- Launched September 2004

- Centers of Cancer Nanotechnology Excellence
- Multidisciplinary Research Teams
- Nanotechnology Platforms for Cancer Research
- Nanotechnology Characterization Laboratory
Nanotechnology – Environmental and Safety Concerns

- Hazard identification
 - In vitro toxicity
 - Acute in vivo toxicity
 - Subchronic/chronic toxicity
 - Route of exposure
- Dose response
 - External dose
 - Internal dose
 - Biologically effective dose
- Exposure assessment
 - Human exposure

Nanomaterials production

Chronic exposure of the worker

Nanomaterials use for biomedical applications

Dose and patient response

Summary

- Nanotechnology clearly provides unique solutions to problems which can not be addressed otherwise

- New approaches to diagnosis:
 - In vitro diagnostic assays
 - New imaging contrast agents
- New approaches to therapy:
 - Local drug delivery
 - Lower side effects
- Nanotechnology and prevention

Developing world:
- Inventor or importer?
- Cost?
- How soon?